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AKRON, OHIO 44325-3906

Abstract

Fluid-particle systems are widely used throughout industry. Using an ad hoc
approach to model a particular fluid-solid process lacks generality. A unified ap-
proach using continuum theory for multiphase systems is applied here to evaluate
a packed bed, filter cake, and continuous gravity thickener. The unified approach
has the advantage that the governing equations are obtained by simplifying the
generalized continuum equations. The simplifying assumptions are obvious from
the equations and do not require intuitive understanding as does the ad hoc ap-
proach. Also, for similar localized conditions the same constitutive relations can
be applied when the same material is used in several processes. In the packed bed,
filter cake, and thickener modeled here, a compressible solid matrix behavior is
represented by a truncated Taylor series expansion for the solid phase stress. The
packed bed and filter cake behaviors are evaluated for a range of pump powers
and bed masses or cake heights. The thickener behavior is evaluated for a range
of feed and sludge discharge concentrations.

INTRODUCTION

Fluid—particle systems are widely used throughout industries to perform
a variety of operations from fluid/solid separations to mass and heat trans-
fer over extended surface areas. The design of such systems can be done
empirically through trial and error and experimentation. However, a more
cost effective approach is to apply theoretical stochastic or deterministic
methods to reduce the costs of the experimentation.

Fluid—particle processes are highly complex, and our understanding of
the mechanisms controlling the process behavior is incomplete. The tra-
ditional ad hoc approach to modeling such processes has provided gov-
erning equations for specific operations and have improved our under-
standing of those operations. Some disadvantages to the ad hoc approach
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are that the assumptions inherent in the derivation of the models may not
be obvious, similarities between the processes are obscure and hinder trans-
fer of information, and adaption of the models to compressive particulate
phases may not be clear.

A ‘“‘unified” approach is taken in this work in which the governing equa-
tions that model the significant affects of the processes are obtained from
volume-averaged continuum theory. As can be expected, when done prop-
erly the same governing equations are obtained from either the ad hoc or
unified approaches. However, in applying the unified approach the analysis
is analogous to that used for single phase systems which makes it easier to
understand and apply, the necessary assumptions become explicit, simi-
larities between processes can be exploited, and material property behavior
is always introduced through the constitutive functions.

The unified approach using the volume-averaged continuum theory also
has the advantage that the general equations are derived directly from
lower scale single phase equations which describe the individual phase
behaviors. Furthermore, the general continuum equations provide an in-
ventory of mechanisms controlling multiphase processes in general. Hence,
less commonly known mechanisms, such as ‘“‘virtual mass” in the momen-
tum jump discontinuity for fluidized beds (I, 18), can be accounted for
and are less likely to be overlookead when obtaining the simplified gov-
erning equations.

To show how to apply the continuum theory to all multiphase processes
would have too broad a scope. Hence the scope of this work is narrowed
down to the isothermal processes of packed beds, filter cakes, and contin-
uous gravity thickeners operating on the same compressible solid partic-
ulate material.

DESCRIPTION OF THE PROCESSES

The major features of the three processes are shown in Fig. 1. The packed
bed is the simplest of the three processes. It has a bed made up of the
particulate solids through which passes the fluid phase. The bed has a
depth of length L, the pressure at the top of the bed is P,, and the pressure
at the bottom of the bed is P,. The solid phase matrix is stationary when
run at steady state, though it can have a nonuniform distribution of phases.
This device is the simplest for determining empirical relations for the con-
stitutive equations.

The filter cake is more complicated than the packed bed due to the solids
content in the inlet slurry. The filter cake is inherently an unsteady process
due to the change in cake height with respect to time, dL/dt. In contrast
to the packed bed which has a stationary solid phase, the solid phase in
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FIG. 1. Features of the packed bed, filter cake, and thickener processes.

the filter cake of a compressible solid moves slowly downward toward the
filter medium at z = 0. The pressures at the top and bottom of the cake
are denoted by P, and P,.

The filter medium at the bottom of the cake also has a pressure drop.
This pressure drop is negelcted in this present work. However, it should
be noted that there are situations, such as when the filter media clogs, in
which this pressure drop can become significant.

For both the filter cake and the packed bed the primary driving force is
due to the pressure drop. At steady state both the pressure drop and flow
rate for the packed bed are constants (17). For the filter cake, typical
experimental operations are run either at constant pressure or constant
flow rate. Many industrial applications use centrifugal pumps to operate
the filter cake, which results in a variable-pressure-variable-rate operation
(21). This latter approach is modeled here for the packed bed and filter
cake, in which the rate of work supplied by the pump, W, is taken to be
a constant and is related to the pressure drop and flow rate by

W = QAP (1)
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The thickener is the most complicated of the three operations because
it has several zones that interact. As shown in Fig. 1 these zones are the
clarifying, settling, compression, and rake action zones. The two zones of
primary interest are the settling and compression zones. In the settling
zone the settling rate controls the rate at which the solids are separated
out of the feed stream while in the compression zone the deformation of
the solid matrix controls the solids concentration in the sludge outlet. In
both of these zones, gravity is the driving force that causes the settling and
deformation. The compression zone is most closely related to the packed
bed and filter cake, except that it has a significant solid phase velocity.

Particles may settle in a fluid in several different manners (1/9), depending
on the particle concentration (or volume fraction) and their relative tend-
ency to cohere. At low concentrations, on the average, the particles are
far apart and are free to settle individually. Collisions can occur between
particles with different velocities. If upon collision the particles cohere,
they can form floccules which will settle at their own characteristic rate.

In a more concentrated slurry the particles are more crowded together.
The movement of the individual particles becomes hindered due to the
flow fields of neighboring particles. The rate of movement of the particles
under these conditions are referred to as hindered settling and can be
related to the terminal velocity of the particles through an empirical cor-
relation (16).

At some higher concentration (or volume fraction) the solid particles
come into contact with each other and the solids matrix thus formed de-
velops a compressive strength. The concentration at which this occurs is
referred to as the “critical concentration’ (6). Each layer of solids is able
to provide mechanical support for the layers above. A given layer of solid
matrix is compressed to concentrations above the critical concentration by
the stresses acting on the layer. These stresses can be due to gravity or to
the drag force (from a moving fluid phase) acting on the solid matrix above
the given layer.

In a packed bed all of the solid particles are contained in the bed which
is at or above the critical concentration. In cake filtration the cake itself is
at or above the critical concentration. The slurry above the filter cake
is below the critical concentration. Normally the flow rate in cake filtration
is high enough that settling in the flurry above the cake can be neglected.

The flow rates in a thickener are inherently slower than cake filtration
to allow settling to separate phases. The concentration of particles in the
clarifying zone are typically low enough that the settling is unhindered. In
the settling zone the particles settle by the hindered settling mechanism
referred to above. In the compression zone, as it is being defined here,
the concentration is at or above the critical concentration. For some ma-
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terials there is a significant transition zone between the settling and
compression zones in which the concentration varies with position. For the
continuous thickener being evaluated here, this transition zone is not con-
sidered.

In all three processes, the bed, cake, and compression zones have a solid
matrix of particles that have a compressive strength which is significantly
less than the strength of the solid material itself. Under stress the solid
particles may move relative to each other or, if the particles are fibrous,
the fibers may bend and deform, which results in the movement and
compression of the solid matrix. It is this compressive solid matrix to which
the volume-averaged continuum theory is applied.

THE VOLUME-AVERAGED CONTINUUM EQUATIONS

Continuum theory provides us with a set of equations that describe the
conservation laws of mass, momentum, energy, and entropy in a continuous
material (9). These equations are derived independently of the material
that makes up the system. Hence, these equations apply whether the system
is a single or multiphase material or whether the fluids have Newtonian
or non-Newtonian behavior. The material dependencies are accounted for
in the constitutive relations.

For flows through porous media, in which there is considerable particle-
to-particle contact to transmit forces and stresses, it is more appropriate
to apply volume averaging to obtain continuum equations for each phase.
These volume-averaged continuum equations explicitly account for the
interactions between the phases.

The development of the volume-average continuum equations is re-
ported in the literature (2, 11-14, 20, 22). There are a few subtle differences
between some authors as to how the deviation terms are incorporated into
the continuum equations. The point of view taken here is that of Hassan-
izadeh and Gray (12) who recognize that for most processes the deviation
values cannot be experimentally separated from the other terms. Hence,
the deviation terms are combined with the flux and internal energy expres-
sions and are accounted for by the constitutive relations,

The continuum theory provides equations for the conservation of mass,
momentum, energy, entropy, and the entropy generation. It is assumed
here that the flows are isothermal and that all of the effects of interest are
contained in the momentum and mass balances. Furthermore it is assumed
that there are only two phases, fluid and solid, present in the system, and
that there are no chemical reactions and no mass transfer between the
phases.

Both phases are assumed to be intrinsically incompressible. For the solid



12: 34 25 January 2011

Downl oaded At:

1098 CHASE

phase this means that the individual solid particles do not compress under
the loads experienced in the operations. However, the porous matrix at
the volume-averaged scale is permitted to deform.

For the above conditions the mass and momentum balances are

a-Phase mass:
0
5(e“p") + V-(e*p*ve) = 0, fora = f,s (2)
f-Phase momentum:
d )
a—t(efpfvf) + V-(e/p/viv)) + €/VP/ + V' —elplg + F¢ =0 (3)
s-Phase momentum:
0
a—t(e‘p‘vs) + V-(ep'v'v*) + €VP/ + Vo' —ep'g —F' =0 (4)

where the superscripts f and s indicate the fluid and solid phases, re-
spectively. The superscripts « indicates either the fluid or solid phase. The
terms in the mass balance, Eq. (2), account for mass accumulation and
convection. The terms in the momentum balances, Eqs. (3) and (4), ac-
count for inertial, convective, pressure, stresses, gravity, and drag forces,
respectively. The primary interaction between the two phases is the drag
force, F4, which is due to a velocity difference between the phases. The
chemical reaction and mass transfer terms have already been removed from
Egs. (2) through (4).

THE GOVERNING AND CONSTITUTIVE EQUATIONS

To evaluate the three processes, the continuum equations are simplified
by assuming one-dimensional flow and by neglecting insignificant terms.
A number of assumptions are made to simplify the mathematics to obtain
the governing equations that account for the significant mechanisms con-
trolling the processes. In the event there are materials and operating con-
ditions for which these assumptions do not apply, then one would have to
revise the assumptions and obtain the relevant governing equations.

The primary assumptions and the resulting simplified continuum equa-
tions are listed in Table 1 for comparison while the details of the evaluations
are contained in the appendices.



12: 34 25 January 2011

Downl oaded At:

UNIFIED ANALYSIS 1099

TABLE 1
Assumptions and Simplified Continuum Equations

Assumptions Common to All Three Processes:

1. Isothermal operating conditions
2. One-dimensional flow
3. No chemical reactions or mass transfer
4. Dominant forces are pressure, gravity, drag, and solid matrix normal stress
5. Constant phase intrinsic densities, p*
Simplified Equations
d ]
a-Phase mass: —(e*) + —(e*v?) = 0, where a = fis (5)
ot a2z
aP
f-Phase momentum: GIE + F? =0, where P = P/ + p/g 6)
P  ar,
s-Phase momentum: e + D=y epr—plg - F =0 (©))]
az az
Assumptions Particular to the Operations
Packed bed Filter cake Gravity thickener
1. Steady state L. Unsteady state 1. Steady state
2. Stationary solids 2. Solids velocity is much 2. Settling solids rate
3. Pressure driving force smaller than the fluid given by hindered set-
provided by a centrifu- phase velocity tling relation (/6)
gal pump 3. Pressure driving force 3. Compression is due to
4. Neglect pressure losses is provided by a cen- solids weight in the
due to fittings and end trifugal pump compression zone
effects 4. Neglect pressure losses 4. All solids exit through
5. Neglect gravity force due to fittings and the the sludge discharge

filter medium stream
5. Neglect gravity force

Many of the assumptions are common to all three processes, resulting
in the same three continuum relations, Eqs. (5)-(7), as the starting equa-
tions for the analysis in the appendices. Additional assumptions that only
apply to a particular operation are also listed in Table 1. Most of the
assumptions are self-explanatory. However, the fourth assumption, com-
mon to all three processes, may not be obvious. This assumption is based
on dimensional analysis (23) and experimental verification (5) for the
system behavior at the volume-averaged continuum scale. At a lower scale
within the pores of the solid matrix the viscous shear and inertia forces
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are significant, but at the volume-averaged scale these forces have been
averaged and are either accounted for in the drag force term or they are
insignificant.

In all three operations the same constitutive relations are assumed for
the drag force, F¥, and the solid phase normal stress, r$,, for the solids in
the compressible solid matrix. We let the drag force be represented by the
Blake-Kozeny expression (3) which is reformulated to the form

52
Fi = (Budll (v - v) ®)

Equation (8) shows that the drag force is proportional to the velocity
difference between the phases. The specific surface area between the
phases, A, is assumed to be a constant in the analysis, though for some
materials it may change as a function of the normal stress on the solid
phase matrix. For isothermal conditions the fluid phase intrinsic viscosity,
1, is a constant, and the parameter, B, is a material parameter of the
multiphase mixture.

The solid phase normal stress in the z-direction is represented by

T = o€ — € ©

which is the first-order term in a Taylor series expansion of the solids stress
as a function of the strain (4). The modulus, o, represents the rate of
change of the stress with respect to the strain. The strain is represented
by the difference in volume fractions, (e* — €£), between position at z and
the top of the bed (cake, or compression zone) where the interparticle
contacts become just sufficient to transmit stress through the solid phase
matrix.

The relation in Eq. (9) treats the solid matrix as an elastically compress-
ible material (15). It only considers the normal stress in the z-direction
which is consistent with the behavior of the three processes considered
here. For more complex operations a more rigorous relation may be re-
quired to account for the nine components of the stress tensor (9, 10).

MODELING RESULTS
The three operations are modeled here using the same constitutive re-
lations and material parameters to emphasize the unified approach to mul-
tiphase systems. The material parameters used in the constitutive relations
are estimated from preliminary experiments on fibrous cellulose particles
in water and are listed in Table 2.



12: 34 25 January 2011

Downl oaded At:

UNIFIED ANALYSIS 1101

TABLE 2
Material Property and Operating Parameters Used in Modeling the
Packed Bed, Filter Cake, and Thickener Processes

Material parameters for the drag and stress relations, Eqgs. (8) and (9):
[BpA?] = 9,530,000 kPa-s/m?, o = 3560 kPa, e: = 0.12
Parameters for the hindered settling expression, Eq. (C.7):
u, = 0.005 m/s, b=5
Material intrinsic densities:
p° = 1469 kg/m?, p/ = 1000 kg/m?

Cross sectional area of packed bed and filter cake: A =001 m?
Slurry solid phase volume fraction for filter cake: €y = 0.04

The values in Table 2 are applied to the equations derived in the ap-
pendices to obtain Fig. 2-7. These figures describe the behavior of the
three processes as predicted by the governing equations under a range of
operating conditions. These figures only depict the macroscale behavior
of the overall processes. The local scale profiles of velocities, pressures,
and volume fractions can also be determined from the equations but are
not needed for this work.

Figures 2 and 3 show the behavior of a packed bed with a cross-sectional
area of 0.01 m?. In Fig. 2 the water flow rate through the packed bed is
plotted versus the bed pressure drop for various pump powers and bed
masses. This plot shows that the largest flow rates are obtained for the
smaller bed masses. Conversely, the largest pressure drops are obtained
for the larger bed masses. The pump power influences the degree to which
the flow rate and pressure drop vary with bed mass.

For a compressible material the bed height will vary for a given bed
mass. The bed height and flow rate are plotted in Fig. 3 as a function of
bed pressure drop for two bed masses. The plot shows that as the pressure
drop increases, the bed height decreases. The pump power is not shown
on this plot but can be obtained from the flow rate and the pressure drop
using Eq. (1).

Similar plots in Fig. 4 and 5 are obtained for a filter cake with a 0.01
m? cross-sectional area. In Fig. 4 the flow rate is plotted versus the cake
pressure drop for varying pump power and cake heights. Early in the
filtration when the cake height is small, most of the pump power is ex-
pended in producing the high flow rate. Late in the filtration when the
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FiG. 2. Plot of flow rate and pressure drop for a packed bed for different bed solid phase
masses and pump powers.

cake height is large, most of the pump power is dissipated across the cake
as drag causing a large pressure drop. As with the packed bed, the pump
power applied to the cake changed the degree to which the flow rate and
pressure drop change for different cake heights.

Filtrations are inherently unsteady. It is advantageous to be able to
estimate the time required to achieve a specified cake height, pressure
drop, or flow rate. These quantities are plotted in Fig. 4 as a function of
time for two different pump powers. As can be seen from the curves, a
tenfold increase in the pump power yields roughly a tenfold increase in the
cake pressure drop while the increase in cake height and flow rate is more
moderate with time. In each case the pressure drop and cake height increase
with time during the filtration while the flow rate decreases.

In Figs. 6 and 7 are plotted the results of modeling a thickener. In Fig.
6 the sediment height of the compression zone is ploted versus the feed
flow rate per unit area of thickener. On this plot are the operating curves
for constant feed and sludge discharge concentrations. Hence, if you know
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FiG. 3. Plot of flow rate and bed height as a function of bed pressure drop for two solid
phase bed masses.

the feed rate and the concentrations of the feed and sludge discharge
concentrations, then you can determine the height of the compression zone.

Operationally, the sludge discharge concentration is determined from
the sludge discharge flow rate. The feed and discharge flow rates are plotted
in Fig. 7 for various feed and discharge concentrations. Hence, between
these two plots, with a given feed rate and feed concentration, the sludge
discharge flow rate can be determined for a desired discharge concentration
and the compression zone height can be estimated.

CONCLUSIONS
The unified approach using continuum theory for multiphase systems is
applied here to the three processes of packed beds, cake filtration, and
continuous gravity thickeners. The results show that the continuum scale
governing equations can be determined for the three processes, and when
the same material is used, then the same constitutive relations can be
applied.
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FIG. 4. Plot of filter cake pressure drop and flow rate for different pump powers and cake
heights.

The packed bed is the simplest of the three operations. The modeling
results show that for a constant bed mass the bed height varies with the
flow rate and pressure drop with a compressible solid phase matrix.

The filter cake is more complex than the packed bed and requires ad-
ditional calculations to relate the bed height to time. Since the cake pressure
drop and flow rate are functions of the cake height then they can be
determined as functions of time also.

The thickener is the most complex of the three processes, requiring a
relation for the settling rate of particles in the settling zone. The calculations
show that in principle, by controlling the feed and sludge discharge flow
rates, the sludge discharge concentration and the sediment height of the
compression zone can be controlled.

The approach used here may be used in modeling other multliphase
processes, such as in expression in which a solid matrix is squeezed between
two plates. Also, by removing assumptions and replacing terms removed
from the equations, more complex operations can be evaluated. If other
materials are to be used in a packed bed, filter cake, or thickener, the
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Fic. 5. Plot of filter cake pressure drop, flow rate, and cake height as a function of time for
two different pump powers.

constitutive relations and parameter values can be replaced with those
pertinent to the desired materials and the process behavior can be deter-
mined using the approach in this work.

APPENDIX A: PACKED BED EVALUATION

The assumptions in Table 1 are applied to Eqgs. (1) and (5)—(9) in this
appendix to evaluate packed bed behavior. The packed bed is the simplest
of the three processes to evaluate. It has a liquid entering at the top of
the bed and exiting at the bottom of the bed with the same flow rate, Q.
For one-dimensional flow assumed here, the local continuum scale veloc-
ities are unifrom across the cross section of the packed bed. From the fluid
phase mass balance, at steady state, the local velocitiy is related to the
flow rate by

evf = —QIA (A.1)

where A is the cross-sectional area of the packed bed and the minus sign
accounts for the velocity in the minus z-direction.
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FIG. 6. Plot of feed stream flow rate and sediment height of the compression zone for the
thickener for different feed and sludge stream concentrations.

Combining Egs. (6)—(9) and (A.1), and neglecting the gravity term, gives

(- eyde  [BrAflQ

€% dz cA (A-2)

where the fluid phase volume fraction, €/, is changed into terms of the
solid phase volume fraction by the identity e/ + €* = 1. Equation (A.2)
can be integrated to obtain

[lx - -l;] + 31In [%] + 3(el — ¢€)
€ € €

+ %(esz ~ &) = - L@%(L —2) (A3)

which relates the volume fraction to position. When evaluated at z = 0,
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FIG. 7. Plot of feed and sludge discharge stream flow rates for the thickener for different
feed and sludge stream concentrations.

this relates the volume fraction at the bottom of the bed, €, to the bed
height, L.

The pressure profile is obtained by combining Eqs. (6), (7), and (9),
neglecting the gravity term, and integrating to obtain

P(L) ~ P(z) = o(e’ — €}) (A4)

When this equation is evaluated at z = 0, then the cake pressure drop is
obtained:

AP = P(L) — P(0) = o(e} — €) (A.5)

Since the solid matrix is deformable, then for a given mass of solids,
M:, the bed height will vary with the stress. We can relate the total solid
phase mass to the volume fractions at the top and bottom of the cake and
the flow rate by

M:s = p’AlLe}q (A.6)
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where €i.q is the bed-averaged solid phase volume fraction. The bed-av-
eraged volume fraction is given by

L
€fed =f e*dz (A.7)
{

)

which, through some mathematical manipulation, can be integrated to
obtain

, ___~oA
bt = [BpAZlQL

p 1
X [lﬂ[:—] = 3(ez - €r) + %(6? —ef) - el — b ] (A.8)

0

Hence, we get an expression for M* by combining Egs. (A.8) and (A.6).
If we are given a mass of solid material, M*, and the output power of the
pump, W, we can then combine Egs. (1), (A.5), (A.6), and (A.8) to
determine the solid phase volume fraction at the bottom of the bed. Then,
from the porosity profile, Eq. (A.3), it is possible to determine the total
bed height.

APPENDIX B: FILTER CAKE EVALUATION

Cake filtration is very similar to the packed bed operation except that
the amount of solid phase material in the cake increases over time. This
makes cake filtration a moving boundary problem. The momentum bal-
ances, Egs. (6) and (7), are implicitly dependent on time, while the mass
balances, Eq. (5), are explicit. The moving boundary is accounted for in
applying the mass jump balance conditions at the cake—slurry boundary.

Normally in cake filtration the velocity of the solid phase is insignificant
compared to the fluid phase velocity. Hence the velocity difference in the
drag force relation, Eq. (8), is approximated by

(v —v)) = —Q/A (B.1)

The determination of the volume fraction and pressure profiles is identical
to that for packed beds and are given by Egs. (A.3) and (A.4).

Filter operations are normally terminated when either the pressure drop
becomes too large (flow rate too small) or the cake height becomes too
large (and the cake fills the filter assembly). For the variable-pressure-
variable-rate filtration the pressure drop and flow rate are both functions
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of cake height. The cake height, in turn, varies with time. The cake height
can be related to time through the mass balance.

To determine the cake height as a function of time, the fluid phase mass
balance is combined with the mass jump balance at the top of the cake to
obtain (4)

dL _ GL)Q)

dt A (B.2)

where G(L) is a function of cake height, L, through the dependence of
the cake average porosity, €/,., on L. The function G(L) is given by

- — €/
G(L) = #&'ﬂﬂ_ (B.3)

€urry — €éakc

where the fluid phase volume fraction of the slurry above the cake, €y,
is assumed to be a constant and the cake average porosity is obtained from

€éa].u: =1- € Cake (B4)

and €%, is given in Eq. (A.8).
Equation (B.2) can be rearranged and integrated to obtain

LA
0 G(L)Q(L)

which, when combined with Egs. (1), (A.3), (A.5), (A.8), and (B.4), can
be numerically integrated to relate cake height to time.

dL =t (B.5)

APPENDIX C: THICKENER EVALUATION

The thickener is the most complex of the three processes evaluated in
this paper. A number of assumptions are used to reduce the equations to
a more tractable form. The main assumptions are listed in Table 1. The
thickener typically has several different zones or regions in which different
mechanisms are important. It is assumed that all of the solids that enter
the thickener exit through the sludge discharge. This means that only clear
liquid exits at the top of the thickener. At the other end of the thickener
the rake action in the rake action zone is assumed to only aid in moving
the sludge through the cone-shaped opening at the bottom of the thickener
and that it has no affect on the solids concentration in the slude discharge
stream.
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The two zones that have the greatest effect on the operation of the
thickener are the settling and compression zones. In the settling zone the
movement of the solid phase relative to the fluid phase is modeled using
a hindered settling expression (16). In the compression zone the gravita-
tional force causing the deformation can be related to the compression
behavior of the solid matrix through the volume-averaged continuum equa-
tions.

Several equations can be deduced from the mass balances. Since the
intrinsic densities are constant, they can cancel out of the phase mass
balances, effectively yielding balances on the volumes for each phase. A
balance over the whole thickener (i.e., at the macroscale) for steady state
and constant intrinsic densities sets the feed stream volumetric flow rate
equal to the sum of the flow rates exiting the thickener:

Or =0, + Qs (C.1)

Also, since all of the solid phase is assumed to exit through the discharge
stream, a macroscale balance on the solid phase gives

€:Qr = €50 (C.2)
while a balance on the liquid phase gives
etQr = €505 + Qo (C.3)

For the purposes of this evaluation, the volume-averaged velocities are
assumed to be one-dimensional (plug flow) in the settling and compression
zones. For large diameter thickeners and with appropriate slurry distrib-
utors at the feed inlet, this assumption is reasonable. However, if there
are wall effects, turbulence, or other effects disrupting the flow, then this
assumption would not hold.

At steady state the continuum scale mass balance gives

%(e“v‘;) =0 (C.4)

which means that the product e*v? is a constant, independent of the z-
position in either the settling or compression zones. This product can be
evaluated at z = 0 to obtain

—-€305/A (C.5)

€'V}

v = —efQ/A (C.6)
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where the minus signs account for the velocity vectors being in the minus
z-direction. By combining Eqs. (C.2), (C.3), (C.5), and (C.6) then the
products e*v? can also be related to the feed inlet conditions.

Unlike the evaluations of the packed bed and the filter cake, in evaluating
the thickener operation the velocity of the solid phase is significant. In the
settling zone we assume that the movement of the solids is due to hidered
settling. The hindered settling rate is given by (16)

u = ufe) (C.7)

where u, is the unhindered terminal velocity of the solids and b is a pa-
rameter that accounts for particle geometry, size, and Reynolds number.
The velocity, u, is the average velocity of the solid particles relative to the
fluid phase velocity.

u= —(v; - vl (C.8)

where u is a positive quantity and the minus sign accounts for the velocities
in the minus z-direction.

Neglecting any zone transition effects and assuming that in the settling
zone volume the volume fractions are equal to the volume fractions in the
feed stream, then Egs. (C.7) and (C.8) can be combined to obtain

—(vs — vl) = ufed)’ (C.9)
By combining this with Egs. (C.5) and (C.1), then Eq. (C.9) simplifies to
Q,/A = ufeh)r*! (C.10)

which indicates that for given u, b, and ef, the liquid overflow rate is
specified. The assumption that the volume fraction in the settling zone is
equal to the inlet condition is a “free settling” approximation (6) that
allows for a tractable solution. Greater accuracy could be obtained using
empirical models accounting for transient resistant effects (7) and entrance
region effects. Models accounting for sludge funneling affecting the settling
and compression zones could also improve upon the analysis (8) but are
not considered here.

In the compression zone the material behavior is described by the mo-
mentum balances. Combining the two momentum balances, Egs. (6) and
(7), to eliminate the pressure term, and substitution of the constitutive
relations, Eqgs. (8) and (9), gives

de®
- [BuAfl s)z(vf —v) o+ et~ phg =0 (C11)
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Substitution of Egs. (C.5) and (C.6), rearrangemnt, and integration gives

F de’ L -z

= C.12
¢ n € Qs | es — €° ( )
BedlT—opa

This expression can be numerically integrated to determine the local
volume fraction as a function of local position from the top of the compres-
sion zone, (L ~ z). However, this does not give the depth of the compres-
sion zone or the volume fraction of the sludge discharge. The volume
fraction of the sludge discharge is important to determine the effectiveness
of the thickeneing operation while the compression zone depth is needed
for the design of the thickener.

With Qf and €} given, then Qs is obtained from Egs. (C.1) and (C.10),
and the sludge discharge volume fraction can be determined from the feed
volume fraction with Eq. (C.2). Once the sludge discharge volume fraction
is known, then the compression zone depth, L, is determined from the
profile calculated with Eq. (C.12) for which by definition z is zero when
€’ is equal to €.

On the basis of the material balances over the whole thickener, and the
assumption that all solids exit through the sludge discharge, then Egs.
(C.1) and (C.2) can be combined and rearranged to obtain

3100
(5 — €%)

Qr = (C.13)

where € varies in the range € < €} < 1 in the compression zone. Since
Q. is determined by Eq. (C.10), then Eq. (C.13) and the constraint on
€% limit the allowable range of Q.

NOTATION
A cross-sectional area of packed bed, filter cake, or thickener
(m?)
A, specific surface area between the phases (m*/m?)
B parameter in Blake-Kozeny expression
b parameter in hindered settling expression
F4, F¢ drag force between the phases, z-component (N/m?)
g gravity acceleration constant (9.807 m/s?)
G ratio of cake volume to filtrate volume, Eq. (B.3)
L bed, cake, or sediment height (m)
M: total mass of solid materials in packed bed (kg)
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i fluid phase pressure (kPa)

P piezometric pressure (kPa)

P, Py fluid pressure at positions z = L and z = 0 (kPa)

AP packed bed or filter cake pressure drop, P, — P, (kPa)
o flow rate in packed bed or filter cake (m*/s)

Ok Oy, Os feed, liquid overflow, and sludge discharge flow rates in

thickener (m?/s)

t time (s)
u, u, hindered settling rate and terminal velocity (m/s)
vi, vs fluid and solid phase mass averaged velocities (m/s)

w pump power (watts)

e/, €’ fluid and solid phase local volume faractions (or concen-
tration)

€lca average volume fraction of packed bed

€ Lake average volume fraction of filter cake

€ dlurry solid phase volume fraction of slurry above the filter cake

€5, €} solid phase volume fraction of feed and sludge discharge
streams

€), € solid phase volume fraction at z = 0 and critical volume
fraction

o modulus in solid phase stress-strain relation

5, T, solid phase stress tensor and zz-component
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